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Asymptotic expansion for reversibleA¿B^C reaction-diffusion process
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We study long-time properties of reversible reaction-diffusion systems of typeA1B↔C by means of the
perturbation expansion in powers of 1/t ~inverse of time!. For the case of equal diffusion coefficients we
present exact formulas for the asymptotic forms of reactant concentrations and a complete, recursive expres-
sion for an arbitrary term of the expansions. Taking an appropriate limit we show that by studying reversible
reactions one can obtain ‘‘singular’’ solutions typical of irreversible reactions.
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I. INTRODUCTION

Behavior of many physical, biological, and chemical sy
tems is determined by evolution of a reaction front form
between initially separated reactants@1,2#. The simplest the-
oretical model of this phenomenon consists in assuming
initially two speciesA and B are uniformly distributed on
opposite sides of an impenetrable barrier. The barrier is
moved at timet50 and the two species start to mix an
react, forming a dynamic reaction front. It is assumed t
diffusion is the only transport mechanism and that the dif
sion coefficients of each species are strictly constant,
independent of spatial location, reactant concentrations,
The problem to be solved is to give a detailed description
spatiotemporal evolution of this reaction-diffusion system

Simple as it is, this system exhibits many unexpected f
tures, especially when the reaction is irreversible (A1B
→C). Using a scaling ansatz, Galfi and Ra´cz @3# showed that
in this case the width of the reaction front grows asympto
cally as ta with surprisingly small value of the exponenta
51/6. Renormalization group technique@4#, dimensional
analysis@5,6#, and extensive computer simulations@7# were
then employed to demonstrate thata51/6 only above the
critical dimensiondc52 and ford<dc one must take into
account fluctuations of reactant concentrations. It was a
shown@8,9# that the case where one of the reactants is
mobile (DA50 or DB50) belongs to a separate universal
class, witha51/2. Short-time perturbation@10# and numeri-
cal @11# analysis revealed that the reaction front can move
a nonmonotonic manner. The quasistatic approxima
@5,12# was used to find a detailed description of concen
tions of speciesA, B, and C outside the reaction zon
@9,13,14# and the case of equal diffusion coefficient w
treated rigorously@15#. These theoretical results are in fu
agreement with experiments@16–20# and were generalized
to several more complex reactions@21–27#.

In reality, however, most of chemical reactions are reve
ible. In spite of this, reversibleA1B
C reaction-diffusion
processes did not attract so much attention. This should
probably attributed to the fact that reversible reactio
diffusion processes for a long time were not supposed
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exhibit any ‘‘anomalous’’ properties, especially after Cho
ardet al. @28# showed that~a! the front width of a reversible
reaction asymptotically scales with time as if the process w
governed only by diffusion@w(t)}t1/2# and ~b! the fluctua-
tions do not modify the scaling exponents even in on
dimensional systems. However, the problem of giving a
tailed description of spatiotemporal evolution of reversib
reaction-diffusion systems remained open.

This issue was recently considered by Sinder and Pe
in a series of papers@14,29,30#. They restricted their analysi
mainly to systems with very small backward reaction rateg
and found that in this case concentrations of speciesA, B,
and C are practically the same as those observed in stri
irreversible reactions (g50) everywhere except in a ver
narrow reaction zone. They confirmed the result of Ref.@28#
that there is a crossover between intermediate-time ‘‘ir
versible’’ and long-time ‘‘reversible’’ regimes. They als
showed that in contrast to irreversible systems, the effec
asymptotic reaction rateR can have two maxima and ther
can be even a region where it is negative. Moreover, t
presented strong arguments in support of a conjecture
reversible reaction-diffusion processes belong totwo distinct
universality classes. One of them consists of systems w
immobile reaction productC and asymptotically immobile
reaction front, while all other systems belong the other u
versality class.

The aim of our paper is to work out a tool for analysis
arbitrary reversible reaction-diffusion systems—expansion
concentrations as series in 1/t ~wheret denotes time!—and to
use it to find exact solutions of the problem at least for so
particular combinations of control parameters. This kind
approach was already successfully applied to reaction fro
at very short times@10#. To our knowledge, however, such
technique has not been applied to the long-time regime.

The structure of the paper is as follows. In Sec. II we g
the precise definition of the problem to be solved. In S
III A we show how to apply the perturbation expansion
reversible reaction-diffusion systems. In Sec. III B we e
ploy this technique to study the case where diffusion coe
cients of all species are the same. In particular, we presen~a!
explicit forms of the long-time reaction rateR and the con-
centrations of speciesA, B, andC; ~b! a recursive formula
for any term of the expansions;~c! detailed analysis of the
crossover to the long-time, reversible regime. In Sec. II
we analyze two particular cases where some aspects o
©2002 The American Physical Society03-1
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system behavior can be studied analytically. Finally, Sec.
is devoted to discussion of results.

II. MODEL

We shall consider the following system of nonlinear p
tial differential equations@3#:

]a~x,t !

]t
5DA

]2a~x,t !

]x2
2R~x,t !, ~1!

]b~x,t !

]t
5DB

]2b~x,t !

]x2
2R~x,t !, ~2!

]c~x,t !

]t
5DC

]2c~x,t !

]x2
1R~x,t !, ~3!

where

R~x,t ![ka~x,t !b~x,t !2gc~x,t !. ~4!

Here a(x,t), b(x,t), andc(x,t) are concentrations of spe
ciesA, B, andC, respectively,DA , DB , andDC are their
respective diffusion coefficients,R(x,t) denotes the effective
reaction rate, whilek.0 andg>0 are the forward and back
ward reaction rate constants, respectively. The initial con
tions to Eqs.~1!–~4! read

a~x,0!5a0H~x!, b~x,0!5b0H~2x!, c~x,0!50,
~5!

wherea0 ,b0 are initial concentrations of speciesA and B,
respectively, andH(x) is the Heaviside step function, whic
is 0 for x,0 and 1 forx.0. Note that in Refs.@14,29,30# R
was called a ‘‘refined reaction rate’’ and denoted asRr . Our
main goal is to give a detailed description of the long-tim
solutions of Eqs.~1!–~5!.

As was pointed out in Ref.@28#, by measuring length
time, and concentration in units ofADA /ka0, 1/ka0, anda0,
respectively, our original problem can be reduced to the
with

DA51, a051, k51. ~6!

We shall adopt these particular values in our further analy
which will leave us with four independent control param
eters:g, b0 , DB , andDC .

III. THE ASYMPTOTIC EXPANSION

A. Formalism

The analysis performed in Refs.@14,28,29# shows that in
the asymptotic, long-time limit solutions to Eqs.~1!–~4! take
on a scaling form

a~x,t !'SA~x/At !, ~7!

b~x,t !'SB~x/At !, ~8!
01110
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c~x,t !'SC~x/At !, ~9!

R~x,t !'t21SR~x/At !. ~10!

We therefore assume that in the long-time limit all functio
involved in Eqs.~1!–~4! can be expanded as series int
[1/t, with coefficients being some functions ofj[x/At. We
thus writea(x,t), b(x,t), andc(x,t) as

a~x,t !5 (
n50

`

t nAn~j!, ~11!

b~x,t !5 (
n50

`

t nBn~j!, ~12!

c~x,t !5 (
n50

`

t nCn~j!. ~13!

Using Eq.~4! we conclude thatR(x,t) can be expressed as

R~x,t !5 (
n50

`

t nRn~j!, ~14!

where

Rn~j![2gCn~j!1(
j 50

n

Aj~j!Bn2 j~j!. ~15!

Substituting Eqs.~11!–~15! into Eqs.~1!–~4! and collect-
ing coefficients att0 we find that

R0~j![A0~j!B0~j!2gC0~j!50. ~16!

This equation expresses a fundamental property of the
tem: in the long-time limit it tends to a local chemical equ
librium ~the forward and backward reaction rates beco
asymptotically equal! @28#. Collecting now coefficients a
t n11, n50,1, . . . , wearrive at

An9~j!1
1

2
jAn8~j!1nAn2Rn11~j!50, ~17!

DBBn9~j!1
1

2
jBn8~j!1nBn2Rn11~j!50, ~18!

DCCn9~j!1
1

2
jCn8~j!1nCn1Rn11~j!50, ~19!

where we used a short-hand notationf 8(j)[d f /dj, f 9(j)
[d2f /dj2. In the lowest order (n50) we thus find

A09~j!1
1

2
jA08~j!5R1~j!, ~20!

DBB09~j!1
1

2
jB08~j!5R1~j!, ~21!
3-2
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DCC09~j!1
1

2
jC08~j!52R1~j!. ~22!

Equations~16!, ~20!–~22! constitute a system of four equa
tions for four unknown functions:A0(j), B0(j), C0(j),
andR1(j). These important functions control the asympto
~long-time! properties of the system and can be readily id
tified with the scaling functions employed in relations~7!–
~10!. However, owing to a nonlinear form of the Eq.~16!, the
explicit form of these functions can be found only in a fe
particular cases discussed below.

B. The case of equal diffusion constants

1. Asymptotic solution

Following Eq. ~6! we will now assumeDA5DB5DC
51, k51, anda051. The only free parameters of the pro
lem are thusb0 andg. Upon adding Eq.~3! to Eqs.~1! and
~2! we arrive at two diffusion equations with well know
solutions,

a~x,t !1c~x,t !5
1

2
erfc~x/A4t !, ~23!

b~x,t !1c~x,t !5
1

2
b0erfc~2x/A4t !. ~24!

This immediately leads to

A0~j!5
F~j!2g1AD~j!

2
, ~25!

B0~j!5
2F~j!2g1AD~j!

2
, ~26!

C0~j!5
erfc~j/2!1b0 erfc~2j/2!12g22AD~j!

4
,

~27!

R1~j!5
gb0~11g1b0!exp~2j2/2!

2p@D~j!#3/2
, ~28!

An~j!5Bn~j!52Cn~j!, n>1, ~29!

where we denoted

F~j![
1

2
@a0 erfc~j/2!2b0 erfc~2j/2!#, ~30!

D~j![@F~j!2g#212g erfc~j/2!. ~31!

Note thatR1(j) can diverge to infinity. This can happe
if and only if D(j)→0 which, in turn, occurs only ifF(j)
→0 andg→0. SinceF(j) decreases monotonically froma0
to 2b0, equationF(j)50 has a unique solution, which wil
be denotedj f .

In the limit of an irreversible reaction we find

lim
g→0

A0~j!5H F~j!, j,j f

0, j>j f ,
~32!
01110
-

lim
g→0

B0~j!5H 0, j,j f

2F~j!, j>j f ,
~33!

lim
g→0

C0~j!5H 1

2
b0 erfc~2j/2!, j,j f

1

2
erfc~j/2!, j>j f ,

~34!

lim
g→0

R1~j!5
b0 exp~2j f

2/4!

Ap erfc~j f /2!
d~j2j f !, ~35!

whered is the Dirac’s delta distribution. These relations a
in full agreement with general formulas derived in Ref.@13#
for the case of a strictly irreversible reaction,g50, and in
Ref. @30# for a05b0 andg→0. Both species,A andB, be-
come effectively segregated atj f . We can thus identifyj f as
the position of the reaction front. Beyond this point the r
action rate tends to 0 and the concentrationsa(x,t), b(x,t),
and c(x,t) satisfy diffusion Eqs.~1!–~3! with R(x,t)50.
However, the existence of a singularity in the above formu
does not mean that the reaction should be asymptotic
restricted to a single point. Recalling thatj[x/At we con-
clude that this singularity indicates that the reaction must
restricted to a region much narrower thanAt; it also suggests
that for g50 andx/At'j f we should try and take into ac
count higher-order terms of expansions~11!–~13!.

In the opposite limit of an infinitely large backward rea
tion rateg we find

lim
g→`

A0~j!5
1

2
erfc~j/2!, ~36!

lim
g→`

B0~j!5
1

2
b0 erfc~2j/2!, ~37!

lim
g→`

C0~j!5 lim
g→`

R1~j!50. ~38!

These equations express the fact that for large backward
action ratesg if a particleC is being created as a result of
forward, A1B→C reaction, it is being immediately con
verted back into a pairA-B; consequently, the concentratio
of particlesC tends to 0 and the concentrations of particlesA
andB evolve as if there was no reaction at all.

2. Recursive formula

To find the remaining terms of expansions~11!–~13! we
employ relations~15!, ~19!, ~22!, and ~29!, arriving at a re-
cursive formula

Cn11~j!5

nCn~j!1
1

2
jCn8~j!1Cn9~j!1Sn~j!

AD~j!
, ~39!

whereSn(j)[( j 51
n Cj (j)Cn112 j (j) andn>0. An important

feature of this relation is that it allows to express then
11)th term of the expansion directly as a function of alrea
3-3
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determined, lower-order terms. Consequently, together w
the explicit form of the zeroth-order terms given in Eq
~25!–~28!, Eqs.~29! and~39! enable one to calculate~at least
in principle! an arbitrary term of the expansions~11!–~13!
analytically. In practice, however, the complexity of the a
propriate formulas grows rapidly and even using compu
algebra systems it is very difficult to determineCn(j) for
more than a few smallest values ofn. Notice also that forj
5j f andg→0 the denominator of Eq.~39! goes to 0.

3. Crossover from ‘‘irreversible’’ to ‘‘reversible’’ reaction fronts

Let t* denote the time when the system enters
asymptotic, long-time regime. For timest@t* each sum in
expansions~11!–~13! should be dominated by its lowes
order nonvanishing term, while fort&t* the system should
behave as if the reaction was strictly irreversible (g50)
@14,28#. This crossover time can be estimated from a relat
A0(j f)'A1(j f)/t* . Using Eqs.~22!, ~29!, and~39! we find
A1(j)52C1(j)5R1(j)/AD(j). In the limit g→0 there is
thusA0(j f)}Ag andA1(j f)}1/g. Therefore in this limit we
have

t* }g23/2. ~40!

Note that Chopardet al. @28# proposed a different rela
tion, t* }g21. However, their conjecture was based on n
merical analysis of a reaction-diffusion system with a ve
specific choice of system parameters:a05b0 , DA5DB ,
andDC50. In other words, they investigated only symme
ric systems with immobile particlesC. Moreover, they as-
sumed that the width of the reaction front can be identifi
width the width of the profile of particlesC, wC(t)
[*x2c(x,t)/*c(x,t)dx. Actually this is acceptably only
when both particlesC and the reaction-front center are im
mobile @DC50, xf(t);0#, a condition implicitly satisfied
in their simulations. ForDCÞ0 or xf(t)Þ0 we expect that
asymptoticallywC(t)}t1/2, while w(t)}t1/6 ~at least forg
50 @3#!, sowc(t) cannot be identified withw(t). From this
point of view the case studied numerically in Ref.@28# be-
longs to a separate universality class. To the same con
sion, though on different grounds, came Sinder and Pe
@29#, who investigated systems with immobile reaction pro
uct (DC50). They found that asymptoticallyw(t,g)
}g1/2t1/2 for systems with the moving reaction front (xf
Þ0) andw(t,g)}g1/3t1/2 if xf;0. Therefore, on taking into
account that for smallg and intermediate timest one expects
w(t,g)}g0t1/6, we immediately arrive at the conclusion th
for asymptotically immobile reaction fronts studied in Re
@28# there should bet* }g21, while for systems withDC
50, g!1, and a mobile reaction front (xfÞ0) the cross-
over time is given by Eq.~40!.

We verified the validity of relation~40! for systems stud-
ied in this section by computer-assisted analysis ofAn(j f)
for the fully symmetric casea05b051. It indicates that

An~j f !}~21!ng(123n)/2 ~41!

for all n<5. Most probably this relation continues to be tr
also for higher-order terms. This would mean that fort@t* ,
01110
th
.

-
r-

e

n

-

d

lu-
g
-

as expected, expansions~11!–~13! will be dominated by their
first terms, while fort!t* they are divergent atj f .

Using Eq.~40! we can estimate the widthw and heighth
of the reaction front at the crossover time. The form
is defined as a square root of*2`

` (x2xf)
2

3R(x,t)dt/*2`
` R(x,t)dt, while h5R(xf ,t) ~herexf'Atj f

is the exact location of the reaction front, see Refs.@3,13#!.
Using Eqs.~28! and ~35! we find

w~ t* !}Agt* }~ t* !1/6, ~42!

h~ t* !}~ t* !21/Ag}~ t* !22/3. ~43!

These are the scaling relations derived by Galfi and Ra`cz for
the case of a strictly irreversible reaction,g50 and t→`
@3#.

C. Other cases with rigorous solutions

1. The limit zjz\`, or the tails of the distributions

Let us now consider the general case of arbitrary value
parametersb0 , DB , DC , and g in the limit of t→` and
uxu→` such thatuxu/At5uju→`. For sufficiently largej we
may expect that the concentration of particlesB will be very
close to its original valueb0. SubstitutingB0(j)'b0 in Eqs.
~20!–~22! we find thatR1(j)'0 and

C0~j!'b0g21A0~j!'h1 erfc~j/A4Deff
1 !, ~44!

where

Deff
1 [

gDA1b0DC

g1b0
~45!

and h1 is an integration constant independent ofj. Note
that, as might be expected on physical grounds,Deff

1 lies
betweenDA andDC .

Similarly, in the opposite limitj→2`, we assume
A0(j)'a051 and find

C0~j!'g21B0~j!'h2 erfc~2j/A4Deff
2 !, ~46!

where

Deff
2 [

gDB1DC

g11
~47!

andh2 does not depend onj. We thus see that sufficiently
far away from the reaction region all the species diffuse w
an effective diffusion coefficientDeff

1 ~for j→`) or Deff
2 ~for

j→2`). Note thatDeff
1 , Deff

2 →DC asg→0, in agreement
with the findings of Ref.@14#.

2. Reaction front atjÄ0 for one or two vanishing diffusion
constants

Equations~21! and ~22! immediately imply that ifDB or
DA vanishes then

R1~0!50. ~48!
3-4
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Thus eitherR1(j) has a local minimum atj50 or it attains
negativevalues in the vicinity ofj50. Both possibilities
have actually been observed in numerical simulations car
out in Ref.@29#.

IV. CONCLUSIONS

We have applied perturbation analysis to reversi
reaction-diffusion systems with arbitrary values of cont
parameters. Using this technique we obtained a system
four equations completely governing the long-time behav
of the system. We then concentrated on several cases w
analytical results can be derived.

In particular, we found the complete solution of the pro
lem for the case where the diffusion coefficients of all sp
cies are the same. Its most interesting feature is the limi
vanishingly small backward reaction rate constantg. In this
limit, as expected, the solutions become singular at a p
that can be identified with the reaction-front center. O
method enables one to analyze explicitly how these sin
larities, especially the Dirac’sd function in the expression
for the local reaction rateR1, appear in mathematical formu
las. This holds out hope that it will be possible to construc
unified theory of reversible and irreversible reactio
diffusion systems. It should be also noticed that o
asymptotic solution is also valid forg50 even though in this
case all higher-order terms of the expansion diverge.

We also found a general recursive formula for any term
the expansion as a function of all lower-order terms. Unf
tunately, complexity of expressions thus obtained grows v
.

.
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rapidly. Nevertheless we believe that this formula open
way of analyzing the evolution of reaction-diffusion system
at arbitrary times.

Using the information about the first correction to th
asymptotic solution we showed that the anomalous prop
ties of irreversible reaction-diffusion systems can be stud
by taking a suitable limit in the formulas obtained for reve
ible systems. A potential advantage of this approach is
mathematical description of reversible reaction-diffusi
systems is more regular, and hence more amenable to r
ous analysis.

We also studied the crossover timet* between
intermediate-time~‘‘irreversible reaction’’! and long-time
~‘‘reversible reaction’’! regimes. We proved that in the cas
of equal diffusion coefficientst* scales withg asg23/2. This
conclusion agrees with results obtained by Sinder and Pe
@29# and disagrees with those obtained by Cornell and D
@5#. This discrepancy can be easily understood if one noti
that Cornell and Droz studied only systems where the wi
wc of the concentration of species C grows in time ast1/6,
while our study was performed for a system wherewc}t1/2.

The main message coming from our work may be su
marized as follows:~a! reversible reaction-diffusion system
are more amenable to rigorous treatment than irrevers
ones;~b! it is possible to investigate the more difficult irre
versible reaction-diffusion systems by taking an appropri
limit in the reversible ones;~c! investigation of reversible
reaction-diffusion systems is interesting not onlyper se, but
constitutes an alternative technique of analyzing irrevers
systems.
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