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Asymptotic expansion for reversibleA+ B+« C reaction-diffusion process

Zbigniew Koz&
Institute of Theoretical Physics, University of Wroctaw, plac Maxa Borna 9, PL-50204 Wroctaw, Poland
(Received 19 April 2002; published 18 July 2002

We study long-time properties of reversible reaction-diffusion systems of AypB« C by means of the
perturbation expansion in powers oft Xinverse of timg¢. For the case of equal diffusion coefficients we
present exact formulas for the asymptotic forms of reactant concentrations and a complete, recursive expres-
sion for an arbitrary term of the expansions. Taking an appropriate limit we show that by studying reversible
reactions one can obtain “singular” solutions typical of irreversible reactions.
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[. INTRODUCTION exhibit any “anomalous” properties, especially after Chop-
ardet al.[28] showed thata) the front width of a reversible
Behavior of many physical, biological, and chemical sys-reaction asymptotically scales with time as if the process was
tems is determined by evolution of a reaction front formedgoverned only by diffusiofiw(t)<t*?] and (b) the fluctua-
between initially separated reactafts2]. The simplest the- tions do not modify the scaling exponents even in one-
oretical model of this phenomenon consists in assuming thatimensional systems. However, the problem of giving a de-
initially two speciesA and B are uniformly distributed on tailed description of spatiotemporal evolution of reversible
opposite sides of an impenetrable barrier. The barrier is refeaction-diffusion systems remained open.
moved at timet=0 and the two species start to mix and _ This _issue was recently considered _by Smde_r and P_elleg
react, forming a dynamic reaction front. It is assumed thai" @ series of papefd4,29,3Q. They restricted their analysis

diffusion is the only transport mechanism and that the diffu-ainly to systems with very small backward reaction mte
and found that in this case concentrations of spegies8,

sion coefficients of each species are strictly constant, i.ef, 4c dcallv th th b 4 in strictl
independent of spatial location, reactant concentrations, et@nd* are practically tne same as tnose observed n strictly

The problem to be solved is to give a detailed description oﬂ ;er\r/g\lrvsgsc{ii?f;'gssq_l_:hg) c?(\)/sfri)r/xg?jr?h:):ggﬁltt I(;]f I%zé]e ry
spatiotemporal evolution of this reaction-diffusion system. y y ’

. . ) . that there is a crossover between intermediate-time “irre-
Simple as it is, this system exhibits many unexpected fea\?ersible” and long-time “reversible” regimes. They also

tures, especially when the reaction is irreversible+®  g,ved that in contrast to irreversible systems, the effective
—C). Using a scaling ansatz, Galfi anddz43] showed that 55y mntotic reaction rat® can have two maxima and there
in this case the width of the reaction front grows asymptoti-ca pe even a region where it is negative. Moreover, they
cally ast® with surprisingly small value of the exponeat  presented strong arguments in support of a conjecture that
=1/6. Renormalization group techniqud], dimensional reversible reaction-diffusion processes belongato distinct
analysis[5,6], and extensive computer simulatiofd were  universality classes. One of them consists of systems with
then employed to demonstrate that=1/6 only above the immobile reaction produc€ and asymptotically immobile
critical dimensiond,=2 and ford=<d. one must take into reaction front, while all other systems belong the other uni-
account fluctuations of reactant concentrations. It was alsoersality class.
shown[8,9] that the case where one of the reactants is im- The aim of our paper is to work out a tool for analysis of
mobile (D,=0 orDg=0) belongs to a separate universality arbitrary reversible reaction-diffusion systems—expansion of
class, witha= 1/2. Short-time perturbatiofl0] and numeri-  concentrations as series irt {Wheret denotes timp—and to
cal [11] analysis revealed that the reaction front can move iruse it to find exact solutions of the problem at least for some
a nonmonotonic manner. The quasistatic approximatiomparticular combinations of control parameters. This kind of
[5,12] was used to find a detailed description of concentraapproach was already successfully applied to reaction fronts
tions of speciesA, B, and C outside the reaction zone at very short time$10]. To our knowledge, however, such a
[9,13,14 and the case of equal diffusion coefficient wastechnique has not been applied to the long-time regime.
treated rigorously15]. These theoretical results are in full  The structure of the paper is as follows. In Sec. Il we give
agreement with experimenf46—20 and were generalized the precise definition of the problem to be solved. In Sec.
to several more complex reactiofzl—27. I A we show how to apply the perturbation expansion to
In reality, however, most of chemical reactions are reversreversible reaction-diffusion systems. In Sec. Ill B we em-
ible. In spite of this, reversibl&+ B=C reaction-diffusion  ploy this technique to study the case where diffusion coeffi-
processes did not attract so much attention. This should beents of all species are the same. In particular, we préagnt
probably attributed to the fact that reversible reaction-explicit forms of the long-time reaction raf and the con-
diffusion processes for a long time were not supposed teentrations of specie&, B, andC; (b) a recursive formula
for any term of the expansiong¢g) detailed analysis of the
crossover to the long-time, reversible regime. In Sec. Il C
*Electronic address: zkoza@ift.uni.wroc.pl we analyze two particular cases where some aspects of the
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system behavior can be studied analytically. Finally, Sec. IV c(x,t)~Sc(x/ ), (9)
is devoted to discussion of results.

R(X,t)~t~1Sg(x/ ). (10)

We therefore assume that in the long-time limit all functions
involved in Egs.(1)—(4) can be expanded as series in
=1/, with coefficients being some functions &&= x/\t. We
thus writea(x,t), b(x,t), andc(x,t) as

Il. MODEL

We shall consider the following system of nonlinear par-
tial differential equation$3]:

da(x,t) . d%a(x,t)

—R(x,t), (1) w
at A 2
> a(x)= 3, T A4q(8), (1)
2
abf;t(,t) _ DB& b();,t) CROX), @ ;
x b(x,)= 3, 7"Bu(£), (12
2
&cf;:,t) :Dca c(>;,t) FRXD), 3 B
X c(x,t)=n§0 7Co(£). (13)
where
Using Eq.(4) we conclude thaR(x,t) can be expressed as
R(x,t)=ka(x,t)b(x,t) —gc(x,t). (4)
Here a(x,t), b(x,t), andc(x,t) are concentrations of spe- R(x,t)= ZO "R, (€), (149

ciesA, B, andC, respectivelyD,, Dg, andD are their

respective diffusion coefficient®(x,t) denotes the effective
reaction rate, whil&>0 andg=0 are the forward and back-
ward reaction rate constants, respectively. The initial condi-

where

tions to Eqs{1)—(4) read Ru(6)==0Ch(O)+ 2 A (8B, (5. (19
=
a(x,00=agH(x), b(x,00=bgH(—X), ¢(x,0)=0,
(5) Substituting Eqs(11)—(15) into Egs.(1)—(4) and collect-

ing coefficients at® we find that
whereag,by are initial concentrations of specidsand B,

respectively, andH (x) is the Heaviside step function, which Ro(&)=Ag(€)Bo(&) —aCo(§)=0. (16

is 0 forx<0 and 1 forx>0. Note that in Refd.14,29,3Q R

was called a “refined reaction rate” and denotedRas Our ~ This equation expresses a fundamental property of the sys-
main goal is to give a detailed description of the long-timetem: in the long-time limit it tends to a local chemical equi-

solutions of Eqs(1)—(5). librium (the forward and backward reaction rates become
As was pointed out in Refl28], by measuring length, asymptotically equal [28]: Collecting now coefficients at
time, and concentration in units QD x/ka,, 1kag, anda,, "% n=0,1,..., wearrive at
respectively, our original problem can be reduced to the one .
i h 4 !
" A+ SEA(D +N ARy 1(£)=0,  (17)
DA: 1, a0=l, k=1. (6)
1
We shall adopt these particular values in our further analysis, DB (&) + ng,@(g)Jr nB,—Ry:1(£€)=0, (18)

which will leave us with four independent control param-
eters:g, by, Dg, andD¢.

1
Dcln(8)+5ECH () +nCht Ry a(§)=0, (19
Ill. THE ASYMPTOTIC EXPANSION

A. Formalism where we used a short-hand notatibi{&) =df/dg, (&)

— A2 2 — :
The analysis performed in Refgl4,28,29 shows that in =d"1/d¢%. In the lowest orderr{=0) we thus find

the asymptotic, long-time limit solutions to Eq4)—(4) take 1
on a scaling form Ag(&)+ 5 EANE) =R1(8), (20

a(x,t)~Sa(x/\t), (7)

1
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1
DcCo(€) + 5 ECo(£)=—Ra(&). (22

Equations(16), (200—(22) constitute a system of four equa-
tions for four unknown functions:4y(€), Bo(€), Co(£),

andR(§). These important functions control the asymptotic
(long-time properties of the system and can be readily iden-

tified with the scaling functions employed in relatio(¥®—
(10). However, owing to a nonlinear form of the E46), the

explicit form of these functions can be found only in a few

particular cases discussed below.

B. The case of equal diffusion constants
1. Asymptotic solution

Following Eq. (6) we will now assumeD,=Dg=D¢
=1, k=1, anday=1. The only free parameters of the prob-
lem are thus, andg. Upon adding Eq(3) to Egs.(1) and
(2) we arrive at two diffusion equations with well known
solutions,

a(x,t)+c(x,t)=%erfc(x/@), (23)
b(x,t)+c(x,t):%boerfo(—x/\/ﬁ). (24)
This immediately leads to
d(E—g+VA
A= 28 X VAE) -
~®(&)—g+ A
()= — IV (26
erfa(£/2) + by erfo — £/2) +2g—2JA(€)
Co &= 4 )
(27)
gbo(1+g+bg)exp — £2/2)
= 2
R41(8) 2a[A(6)]2 , (28)
An(§)=Bn(§)=—-Ci(§), n=1, (29
where we denoted
1
() =5[aoerfa(£/2) —bg erfa( — £/2) ], (30)
A(§=[D (&) —gl?+2gerfo£/2). (31

Note thatRR,(§) can diverge to infinity. This can happen
if and only if A(§)—0 which, in turn, occurs only ifb (&)
—0 andg— 0. Since®d (¢) decreases monotonically froag
to —bg, equationd(£) =0 has a unique solution, which will
be denoted; .

In the limit of an irreversible reaction we find

. ®(§), <&
lim Ay(§)= 0 £=¢,

g~>0

(32
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lim Bo(&) = 0 =g (33
4o —D(§), &,
1
Elooerfc(—g/Z), <&
limCo(é)= 1 (34)
9-0 Serfo(£12), =&,
. bo exp( — £2/4)
iMmR (&) =————— §(— &), 35
gILnO 1(8) T erfo&2) (E—&p) (39

where é is the Dirac’s delta distribution. These relations are
in full agreement with general formulas derived in Rdf3]
for the case of a strictly irreversible reactiags=0, and in
Ref. [30] for ag=by andg—0. Both speciesA andB, be-
come effectively segregated &t. We can thus identify; as
the position of the reaction front. Beyond this point the re-
action rate tends to O and the concentratia(s,t), b(x,t),
and c(x,t) satisfy diffusion Egs.(1)—(3) with R(x,t)=0.
However, the existence of a singularity in the above formulas
does not mean that the reaction should be asymptotically
restricted to a single point. Recalling thgEx/\t we con-
clude that this singularity indicates that the reaction must be
restricted to a region much narrower thdh it also suggests
that forg=0 andx/\t~&; we should try and take into ac-
count higher-order terms of expansiorid)—(13).

In the opposite limit of an infinitely large backward reac-
tion rateg we find

1
lim Aq(£)= Serfo(£/2), (36)
g—

1
lim Bo(&) = b erfa( — £/2), (37)
g—e
lim Co( €)= lim Ry(£)=0. (38)

g—® g—®

These equations express the fact that for large backward re-
action rateg if a particleC is being created as a result of a
forward, A+B—C reaction, it is being immediately con-
verted back into a paiA-B; consequently, the concentration
of particlesC tends to 0 and the concentrations of partides
andB evolve as if there was no reaction at all.

2. Recursive formula

To find the remaining terms of expansiofid)—(13) we
employ relationg15), (19), (22), and(29), arriving at a re-
cursive formula

1
NCh(8)+ 5 ECh(6) +Cr(6) +Si(8)
VA($)

whereS,(§)=={_,C(£)Cy+1-(£) andn=0. An important
feature of this relation is that it allows to express the (
+1)th term of the expansion directly as a function of already

Cas1(8)= (39
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determined, lower-order terms. Consequently, together witlas expected, expansiofil)—(13) will be dominated by their
the explicit form of the zeroth-order terms given in Egs. first terms, while fort<t* they are divergent a§; .
(25—(28), Egs.(29) and(39) enable one to calculatat least Using Eq.(40) we can estimate the widilv and heighth
in principle) an arbitrary term of the expansio$1)—(13)  of the reaction front at the crossover time. The former
analytically. In practice, however, the complexity of the ap-is defined as a square root off”_ (x—Xx;)?
propriate formula; grows rap_id_ly and even us_ing computers R(x,1)dt/[* .R(x,t)dt, while h=R(x;,t) (herex;~ &
algebra systems it is very difficult to t_determlﬂg(g) for is the exact location of the reaction front, see Rg3s13)).
more than a few smallest values mfNotice also that fog Using Eqgs.(28) and (35) we find
=¢; andg—0 the denominator of Eq39) goes to 0.
_ . : . W(t*)oe\gt*oc(t%) 15, (42)

3. Crossover from “irreversible” to “reversible” reaction fronts

Let t* denote the time when the system enters the h(t*)oc(t*) =1 Jgoe(t*) =28, (43)
asymptotic, long-time regime. For timést* each sum in .
expansions(11)—(13) should be dominated by its lowest- These are the scaling relations derived by Galfi anczRer
order nonvanishing term, while farst* the system should the case of a strictly irreversible reactiog=0 andt— o
behave as if the reaction was strictly irreversiblg=(0) [3].
[14,28. This crossover time can be estimated from a relation

Ao(&7)~ A1 (&)/t* . Using Egs.(22), (29), and(39) we find C. Other cases with rigorous solutions
Ay(€)=—Co( =R1(£)/VA(£). In the limit g—>0 the'fe IS 1. The limit |£]— =, or the tails of the distributions
thus Aq(&;) < g and.A; (&)= 1/g. Therefore in this limit we ) )
have Let us now consider the general case of arbitrary values of
parameterd,, Dg, D¢, andg in the limit of t—o and
t*ocg 32 (40)  |x|—o such thaix|/\t=|& —o. For sufficiently larget we

may expect that the concentration of partidiewill be very

Note that Chopardet al. [28] proposed a different rela- close to its original valud,. SubstitutingBy(£) ~by in Egs.
tion, t* =g~ 1. However, their conjecture was based on nu-(20)—(22) we find thatR,(£)~0 and
merical analysis of a reaction-diffusion system with a very
specific choice of system parameteeg=b,, Dpo=Dg, Co(€)~bog L Ag(&)~ 7" erfd &/\4D %), (44)
andD:=0. In other words, they investigated only symmet-
ric systems with immobile particle€. Moreover, they as- Where
sumed that the width of the reaction front can be identified
width the width of the profile of particlesC, wg(t) +_9DatboDc
= [x%c(x,t)/fc(x,t)dx. Actually this is acceptably only ef g+bo
when both particle€ and the reaction-front center are im- L ) ) )
mobile [D¢=0, x;(t)~0], a condition implicitly satisfied @nd #" is an integration constant independent {fNote
in their simulations. FoD¢#0 or x;(t)#0 we expect that that, as might be expected on physical grouridg; lies
asymptoticallywc(t)«t*2 while w(t)=t™® (at least forg  PbetweenD, andDc.
=0 [3]), sow,(t) cannot be identified witw(t). From this Similarly, in the opposite limit{——c«, we assume
point of view the case studied numerically in REZ8] be-  Ao(§)~ao=1 and find
longs to a separate universality class. To the same conclu- 1 B -
sion, though on different grounds, came Sinder and Pelleg Co(§)~g "Bo(§)~n" erfa =&/ V4D,  (46)
[29], who investigated systems with immobile reaction prod-
uct (D-=0). They found that asymptoticallyw(t,g)
«g%Y2 for systems with the moving reaction fronk( D-+D
#0) andw(t,g)<g*3t?if x;~0. Therefore, on taking into Doi= 977 Jc
account that for smatj and intermediate timeisone expects
w(t,g)= g6 we immediately arrive at the conclusion that
for asymptotically immobile reaction fronts studied in Ref.
[28] there should be&* g™, while for systems withD
=0, g<1, and a mobile reaction frontx{+0) the cross-
over time is given by Eq(40).

We verified the validity of relatiori40) for systems stud-
ied in this section by computer-assisted analysis4gfé;)
for the fully symmetric casey=by=1. It indicates that

(45)

where

g+1 “7)
and »~ does not depend oé. We thus see that sufficiently
far away from the reaction region all the species diffuse with
an effective diffusion coefficierﬂ)gff (for é—o0) or D (for
é&——o). Note thatD ¢, D_4—Dc asg—0, in agreement
with the findings of Ref[14].

2. Reaction front até=0 for one or two vanishing diffusion

constants
An( &) (—1)ngtt—3m72 (41) Equations(21) and (22) immediately imply that ifDg or
D4 vanishes then
for all n=<5. Most probably this relation continues to be true
also for higher-order terms. This would mean thattfeit*, R.(0)=0. (48)
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Thus eitherR (&) has a local minimum ag=0 or it attains  rapidly. Nevertheless we believe that this formula opens a
negativevalues in the vicinity ofé=0. Both possibilities way of analyzing the evolution of reaction-diffusion systems
have actually been observed in numerical simulations carriedt arbitrary times.
out in Ref.[29]. Using the information about the first correction to the
asymptotic solution we showed that the anomalous proper-
V. CONCLUSIONS ties of. irreversfible re.ac.tic.)n—diffusion systems can be studied
by taking a suitable limit in the formulas obtained for revers-
We have applied perturbation analysis to reversiblable systems. A potential advantage of this approach is that
reaction-diffusion systems with arbitrary values of controlmathematical description of reversible reaction-diffusion
parameters. Using this technique we obtained a system &fystems is more regular, and hence more amenable to rigor-
four equations completely governing the long-time behavioous analysis.
of the system. We then concentrated on several cases whereWe also studied the crossover time&® between
analytical results can be derived. intermediate-time(“irreversible reaction’) and long-time
In particular, we found the complete solution of the prob-(“reversible reaction’) regimes. We proved that in the case
lem for the case where the diffusion coefficients of all spe-of equal diffusion coefficients* scales withg asg™2 This
cies are the same. Its most interesting feature is the limit oonclusion agrees with results obtained by Sinder and Pelleg
vanishingly small backward reaction rate constgnin this  [29] and disagrees with those obtained by Cornell and Droz
limit, as expected, the solutions become singular at a poirts]. This discrepancy can be easily understood if one notices
that can be identified with the reaction-front center. Ourthat Cornell and Droz studied only systems where the width
method enables one to analyze explicitly how these singuw, of the concentration of species C grows in timetd§
larities, especially the Dirac' function in the expression while our study was performed for a system wherect*/2.
for the local reaction rat® ,, appear in mathematical formu- The main message coming from our work may be sum-
las. This holds out hope that it will be possible to construct anarized as follows(a) reversible reaction-diffusion systems
unified theory of reversible and irreversible reaction-are more amenable to rigorous treatment than irreversible
diffusion systems. It should be also noticed that ourones;(b) it is possible to investigate the more difficult irre-
asymptotic solution is also valid far=0 even though in this  versible reaction-diffusion systems by taking an appropriate
case all higher-order terms of the expansion diverge. limit in the reversible ones(c) investigation of reversible
We also found a general recursive formula for any term ofreaction-diffusion systems is interesting not opkr se but
the expansion as a function of all lower-order terms. Unfor-constitutes an alternative technique of analyzing irreversible
tunately, complexity of expressions thus obtained grows vergystems.
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